import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory
import os
for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:
print(os.path.join(dirname, filename))
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
train = pd.read_csv('/kaggle/input/spaceship-titanic/train.csv')
test = pd.read_csv('/kaggle/input/spaceship-titanic/test.csv')
print(train.shape)
print('_'*35)
print(train.dtypes)
print('_'*35)
print(train.head())
# Drop the missing values in the train dataset
df_train = pd.DataFrame(train)
df_train = df_train.dropna(axis=0, inplace=False)
le = LabelEncoder()
# Fit and transform the "Transported" column
df_train['Transported'] = le.fit_transform(df_train['Transported'])
# Use one-hot encoding on the columns with string values
df_train = pd.get_dummies(df_train, columns=['HomePlanet', 'CryoSleep', 'Cabin', 'Destination', 'VIP', 'Name'], prefix=['HomePlanet', 'CryoSleep', 'Cabin', 'Destination', 'VIP', 'Name'])
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(df_train.drop('Transported', axis=1), df_train['Transported'], test_size=0.2)
# Train the model
gnb = GaussianNB()
gnb.fit(X_train, y_train)
# Predict the target
y_pred = gnb.predict(X_test)
print(y_pred)
from sklearn.metrics import confusion_matrix
# Create a confusion matrix
cm = confusion_matrix(y_test, y_pred)
print('Confusion Matrix: \n', cm)
'강얼쥐와 함께 즐겁게 읽는 AI' 카테고리의 다른 글
큐큐큨 큐큐큐큐큐큐큐 태이태닉 (1) | 2023.03.19 |
---|---|
gpt 얘들이 약 먹었나 미친 듯한 속도로 발전 중이다.. ㅎㄷㄷ (2) | 2023.02.15 |
구글 데이터 분석하기 (0) | 2023.02.09 |
AI 로 가볍게 주식투자 해보기 (*가벼운 내용입니당~) (0) | 2023.02.07 |
CV2 상에서 포착된 비디오 프레임 안에 있는 HOG 라이브러리를 분석하는 계수에 관하여 (0) | 2023.02.01 |